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Contributions to Vortex Particle Methods for the Computation
of Three-Dimensional Incompressible Unsteady Flows

G. S. WINCKELMANS AND A. LEONARD

Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, California 91125

Recent contributions to vortex particle methiods for the computation
of three-dimensional incompressible unsteady flows are presented.
Both singular and regularized vortex particle methods are reviewed,
along with an investigation of different evolution equations for the
particle strength vector. For the regularized method, a new algebraic
smoothing is presented with convergence properties equal to those
of Gaussian smocthing. A version of the regularized methad which
can account for viscous diffusion is developed using a scheme that
redistributes the particle strength vectors. Finally, particle methods are
investigated with respect to conservation laws, and new expressions
for the quadratic diagnostics, energy, helicity, and enstrophy are
derived.  © 1993 Academic Press, Inc.

1. INTRODUCTION

The momentum equation for a constant-density fluid can
be written as

] .
—u+mxu=—V(§+E—2—E)+vV2u, (1)

ot

where u(x, 1} is the velocity field, o{x, 1) =V x u(x, #) is the
vorticity field, p(x, ¢} is the pressure field, p is the density,
and v is the kinematic viscosity. The vorticity equation is
obtained by taking the curl of Eq. (1),

0
a—(;)-l-Vx(mxu_)::szm, (2)
or equivalently,
Do Je
_————— »V = - 2
Dr =2 (u-Vio=(w-Viu+vVa (3)

Recalling that the evolution equation for a material line
element &1 is given by (Batchelor [47)

D—él-—(él-V)u,

DL (4}
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it follows that, for inviscid flows, vortex lines move as
material lines (Helmholtz). A vortex tube is defined as the
collection of vortex lines that pierce a given surface patch S,
The circulation of a vortex tubeis I'=[ @ - dx =, u - dx.
Because V-@ =0, the circulation of a vortex tube is the
same for all oriented surface patches that define the vortex
tube (Helmholtz). For inviscid flows, the circulation of a
vortex tube is conserved (Kelvin). Vortex tubes are thus
interesting entities in inviscid fiows: they move as material
volumes and they retain their circulation; i.e., they preserve
their identity. These facts form the basis for the method of
vortex filaments (see Leonard [30, 31] for reviews). For
viscous flows, the concept of vortex tubes is not as useful,
One can define vortex tubes at every instant and associate
to each vortex tube a unique circulation. This is kinematics
only, however. Vortex tubes do not necessarily retain their
identity because of the possibility of reconnection of vortex
tubes by viscous diffusion.

This paper is written from work which was part of
a Ph.D. thesis (Winckelmans and Leonard [43, 44];
Winckelmans [45]). 1t is concerned with vortex particle
methods for the computation of three-dimensional {3D)
incompressible unsteady flows, both inviscid and viscous,
Vortex particles, also called vortex sticks or vortons, are an
alternative to the use vortex filaments. A position vector and
a strength vector (=vorticity x volume) i§ associated to
each element. Each element can be thought of as a small
section of a vortex tube ( =circulation x length). The element
is convected by the local velocity and the strength vector is
strained by the local velocity gradient. The method has the
advantage that the particles are somewhat independent as
they do not necessarily belong to a specific vortex filament
for all times. This property also makes the method attractive
because treatment of viscous diffusion using a scheme
developed by Mas-Gallic [32], and Degond and Mas-
Gallic {22] can be incorporated in the method (see also
Fishelov [23] for an alternative way of incorporating diffu-
sion in the method). With that scheme, processes involving
the reconnection of vortex tubes (such as the fusion of two
vortex rings) can be computed. The particle method
presents, however, a problem: the particle representation of
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the vorticity field is not guaranteed to remain a good
representation of a divergence-free field for all times. This
issue is also addressed. In particular, a relaxation scheme is
proposed which forces the particle vorticity field to remain
nearly divergence-free for all times.

The paper is organized as follows: use of §-function
particles and weak solutions of the vorticity equation
(Section 2); use of regularized particles and choice of the
regularization function (Section 3); viscous diffusion by the
redistribution of element strengths {Section 4); and conser-
vation laws—how to evaluate them—are they satisfied?
(Section 5 and Appendix C). Numerical results are also
presented for the interaction of vortex rings.

2. SINGULAR YORTEX PARTICLES

The vorticity equation, Eq. (3), is a nonlinear transport
equation which can be solved using a particle method (see,
e.g., Raviart [37,38]). In the singular vortex particle
method (also called method of peint vortices or vortex sticks
or vortons: Rehbach [39], Chorin (9, 10], Saffman [41],
Leonard [30, 31], Novikov [35], Aksman, Novikov, and
Orszag [ 1], Anderson and Greengard [2], Mosher [34],
Saffman and Meiron [427], Winckelmans and Leonard
[43, 441, Winckelmans [457), the particle representation of
the vorticity field is taken as

A(x, 1) =Y @’(t) vol? 3(x — x"(1))
2
=Y a’(1) 3(x — x?(1)), (5)
2

where #{x) is the 3D d-function. The velocity field u(x, #)
is computed from @(x, ¢) as the curl of a streamfunction
which solves V2y(x, t)= —@(x, 7). Recalling that the
Green’s function for —V? in unbounded domain is G(x) =
1/(4n |x1),

V(x, 1) =G(x) * d(x, 1) =}, G(x - x7(1)) a’ (1}

1 a’(7)
" 4n L x —x?(1)|

P

(6)

where * stands for the convolution product. The velocity is
obtained as

i

u(x, 1) =Vxg(x, 1) =3 V(G(x —x’(1))) x a’(1)
P

1 1 » »
= rﬂgm(x—x (1)) xa?(t)

Y K(x— x*{1)) x a”(1)

I
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=(K{x)x ) *d(x, {}

- ———‘—Fu—xpm)xnp(r)

A x —x”(1)
+u?(x, 1), (7)
where K(x)x = —(x/(4n |x|*)) x is the Biot-Savart kernel -

and where u?(x, 1) stands for the velocity field without the
contribution of the p particle.
A few remarks should be made at this point:

» The particle field (5) is not generally divergence-free:

V-(@(x, 1)) =3 V(3(x —x"(2))) - @*{1). (8)
v

Thus a “basis” which is not generally divergence-free is used
to represent the divergence-free vorticity field .

* The streamfunction (6) is also not generally
divergence-free:
V- (ix, )= — 5 ——
Yo = T S =)
x((x = x"(1))-a*(1)). (9)

This result is a direct consequence of the fact that
Vi = — @ is solved with @& not generally divergence-free.

» The velocity field (7) is divergence-free since it is the
curl of a streamfunction. Indeed,

1
m(x—x"(r))

A(x—x"(1))x a’(1)) =0,

3
V(i 0) =3
I4

{10)

since (x — x7) is orthogonal to (x — x?) x a”, At x =x7”, the
smgularity is of removable type so that V-u =0,

« As noted by Novikov [35], one can reconstruct the
divergence-free vorticity field by taking the curl of the
velocity field (7):

o(x, )=Vxu(x, 1)

=y [a”(:) S(x —x”(1))

9 () tr )|

Py 1 P
=2 (o2 =) 0

((x —x?(1)) - a?{1))
4z |x —x?(1)]°

(11)

+3 (xx‘”{t))]. (12)
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The added term in Eq. (11) corresponds to that which is
needed to close the vortex.lines and it decays as 1/r>. Thus,
w=Vxu=Vx(Vx{y)= -V +V(V-§). Recalling that
V§ = —a, it follows that V(V.{)=w —&. The second
term in Eq. (11) does not contribute to the Biot-Savart
velocity field as it is the gradient of a scalar.

2.1. Evolution Equations

In the classical scheme, the evolution equations for the
particle position and strength vector are taken as

g;x'”(t)=u”(xf’[t), 1, (13)

d
Ea (f):(ll (I)V)u (X (!)a t)'

(14)
As noted by Rehbach [39] (see also Cantaloube and
Huberson [8], Choquin [12], and Choquin and Cottet
[131), alternative forms of the vorticity equation (3) can be
written as
Do

=2 (@ V),

D (15)

:%(m-(Vﬁ-VT))u. (16)
This is so because (Va—(Va)T).-b=(Vxa)xb for any
vector fields a and b. Here, we have that a=u, b=, with
w=Vxu Note that }(Vu+ (Vu)")=Def(u) = {e;} is the
classical deformation tensor. The formulation (15) suggests
the rranspose scheme,

Can= @0 Vw0, (7)
while the formulation (16) suggests the mixed scheme,
d 1
@ )=5 (") (V+VT)ur(x(e), 1) (18)

N

Initial condition for the computation of the collision of two

‘Dx.

FIG. 1.
vortex rings.
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This scheme was favored by Rehbach because the symmetry
of the deformation tensor yields computational savings. All
three schemes would be equivalent if the particle vorticity
field, Eq. (5), were equal to the curl of the velocity field (7).
Unfortunately, this is not the case as a consequence of the
nonzere divergence of the field (5). Thus, although Egs.
(14), (15), and {16) are equivalent when @ =V x u, they are
not equivalent otherwise. Consequently, Eqs. (14), (17), and
{18) may lead to different results when solving the 3D
vorticity equation with vortex particles.

The transpose scheme Eq.{17) appears to be special.
First, it leads to the exact conservation of the total vorticity
{Choquin and Cottet [137]}, a property not satisficd by the
classical scheme (14) or the mixed scheme (18). Second,
it leads to a weak solution of Eq.(15) as shown by
Winckelmans and Leonard [43]. (By contrast, the classical
scheme does not lead to a weak solution of Eq. (3) (Saffman
and Meiron [42]), and the mixed scheme does not lead to
a weak solution of Eq. (16).) The proof is however “fragile”
because the integrals, evaluated in the principal value sense,
are bounded only for a radially symmetric regularization
of the &-function. (Greengard and Thomann [24])
Nevertheless, that property and the conservation of total
vorticity lead to the belief that the transpose scheme is more
suited than the classical scheme to the representation of 3D
flows using vortex singularities. This point is reenforced by
numerical results on the inviscid collision of two vortex
rings, Figs. 1 to 4 (see also Knio and Ghoniem [28] for a
numerical study of the placement of vortex particles within
a vortex ring cross scction ).

Although the computations fail to go through the fusion
process {(a process which requires viscous diffusion!), the
transpose scheme yields a particle field @ which remains a
good representation of @ for the longest time and hence
nearly conserves linear impulse, /, and kinetic energy,

ngloyers, lsSnsn,
+2n?)
&n

Tt=h

FIG. 2. Discretization of the core of a vortex tube. Each cell has an
equal area 7.
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o TIME= 0

I TIME= 4.214

FIG. 3. Collision of two vortex rings computed with the method of
singular vortex particles and using the transpose scheme. View of particle
strength vectors. Initial conditions: =1, R=1,5=3, 6,=10°, r, =008,
n,=2(—+N,=25), N,=44, and particle strength vectors in ratio
[1:0.54:0.161

E_., up to numerical blowup (see also Section3$ and
Appendix C).

Finally, it should be mentioned that, regardless of the
choice for the stretching operator, convergence of the 3D
point vortex method to the incompressible Euler equations
with smooth solutions was recently proven by Hou and
Lowengrub [267], and Cottet, Goodman, and Hou [197]).
The method of regularized vortex particles was also shown
to converge in 3D and is now considered.
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FIG. 4. Collision of two vortex rings computed with the method of
singular vortex particles. Diagnostics f, £, and E (dash). Transpose scheme
(solid), classical scheme (chain-dash), and mixed scheme (chain-dot).

3. REGULARIZED VORTEX PARTICLES

In the regularized version of the vortex particle method,
the particle representation of the vorticity field is taken as
(Rehbach [39], Chorin [9, 10], Saffman [41], Leonard
[30,31], Beale and Mada [6,7], Anderson and
Greengard [2], Mosher [34], Beale [ 5], Choquin [12],
Cottet [17, 18], Choquin and Cottet [13], Winckelmans
and Leonard [43,44], Chua eral [15], Winckelmans
[45], Knio and Ghoniem [28], Chua [16]

(X, 1) = (x) * d(x, 1)

=Y a?(1) {,(x —x”(1)). (19)
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where {, is a regularization function which is usually taken
as radially symmetric, and ¢ is a smoothing radius (ie., a
cutoff length or core size), 1.e,

1
) =5C (ﬂ) 20)
a
with the normalization
an [ Up)p?dp=1. @)
0

The velocity field is computed from the particle represen-
tation of the vorticity fields as the curl of a streamfunction
which solves V3 _(x, 1)= —&,(x, 1). Defining G(p) such

that
o) =2 _ii( zE)
)= G(p)—pzdp "
14?7
=27 woe), (22)
one obtains
Y (x, )=G(x) * @,(x, 1)=G,(x) * d(x, 1)
=3, G (x —x?(1)) a”(1), (23)

p

where G, (x) = G(|x|/o)/e. A function ¢(p) is now defined:

aip)=] Lty (24)

From the normalization condition (21), 4rg(p)—1 as
p - 0. Since {(p) is @(1) for small p, g(p) is O(p*) for small
p. The following relations between {{p), G(p), and g(p) are
useful. First, from the definition of ¢{p),

1 d
L glp)={(p). (25)
Second, from the definition of G{p) and g(p),
ez [Fdfd )
q(p)—J0 () ride= L dt(! de(”
, d
= —p“;,—G(p), (26)
fi}
so that
1d o249
i (P}=—7" (27}
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Finally, from Eq. (25),

pa’p (q(p)) 1 (C( )3

From Eq. (27), G(p) is O(p?) for small p and 4nG(p) — 1/p
as p — co. The velocity field is obtained as

u,(x, )

-qf)_f)) (28)

=Vx,(x, 1)
ZV(
_ zqﬁ (x — x(1))

x?(1)|?

= T K, (x—x(1)) x 07(1)

Go(x—x1)))xa’(r)

T (x—x*(1)) x a?(1)

= (K (x})x ) * @(x, 1}, (29)
where g,(x) = g({x|/o} and K,(x) x = —(q,(x}/Ix{*} x x is
the regularized Biot-Savart kernel.

The evolution equations for the particle position and
strength vector are, with the classical scheme, taken as

ixp(r)=uu(x”(r), t),

dt (30)
d
7 a’(t)=(a”(f)-V)u (x"(¢}, ¢). (31}
Again, the transpose scheme
d T .
7 a’(1)=(a?(1) -V )u (x7(2), 1) (32)
or the mixed scheme
9 ar(ty =1 (@) (V- V) u, k() 1) (33)
dt 2 . ’

can be used instead of Eq. (31}). The details of the evolutions
equations are provided in Appendix A.

Remarks made in Section 2 concerning singular vortex
particles also apply here:

« The particle field (19) is not generally divergence-free:

V- (@, (x, )= ZV (x—x7(1))}- a?{1). (34)

Thus, a basis which is not generally divergence-free is used
to represent the divergence-free field w. Initially, @,(x, 0)
can be set to be a good representation of w(x, 0), but
nothing guarantees that, as time evolves, @,(x, ¢) remains a
good representation of w(x, 1).
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» The streamfunction (23} is
divergence-free:

also not generally

T
V. (f,(x, )= _Z%}%}

X ((x —x7{1)}- a’(1)). (35)

This result is a direct consequence of the fact that
V3, = —@®, is solved with @, not generally divergence-
free.

= The velocity ficld (29} is divergence-free since it is the
curl of a streamfunction.

» The divergence-free vorticity field can be reconstructed
by taking the curl of the velocity field (29):

o, (x 1)=Vxu,x, 1)
=Y. [a7(1) L (x —x*(1))
+V(a?(1) - V(G (x = x7())))]
—x?
=X | (ttx w20 e
4(x = X’(1))
+(3 X% (0]}

§ ((x—x?(¢))-a?(1))

[x — x7(1)]?

—ca(x—xP(z)))

(x—xf’(:))]. (37)

The added term in Eq. (36} corresponds to that which is
needed to close the vortex lines and it decays as 1/r®, Thus,
w,=Vxu,=Vx(Vxy,)= -V, +V(V-§,) Recalling
that V3, = —@,, it follows that V(V.{,)=0, —&,.
The second term in Eq. (36) does not contribute to the
Biot-Savart velocity field as it is the gradient of a scalar.
Beale and Majda [6] have proven convergence of the
regularized vortex particle method to the Euler equations
with smooth solutions when the stretching term, Vu, is
approximated by a finite difference operator, V*u, evaluated
on a grid (see also Anderson and Greengard [27]). Beale [5]
and Cottet [18] (see also Choquin and Cottet [13]) have
proven independently the convetgence of the above
regularized vortex particle method (also called a grid-free
method). These convergence proofs hold for any of the
choices Eqs. (31), (32), or (33). Beale [ 5] has also obtained
improved error estimates when using the mixed scheme
(33), due to the symmetry of the stretching operator. It is
not intended to review the various convergence proofs. It is
only recalled that the appropriate error norms for the vor-
ticity and velocity fields go to zero as the number of particles
is increased and the core size o is decreased, subject to the
constraint that cores overlap (ie., 6/h > |, where /1 is a typi-
cal distance between neighbor particles). The error norm lor
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the vorticity is composed of two terms: one term which is
®&((o/L)"} (where L is a global length scale} and another
term which is @((a/L){h/c)™). The exponent m is related to
the number of derivatives that exist of {{p). For most {func-
tions used in practice, m is large so that it is essential that
cores do overlap for the second error term to vanish as
o — 0. The exponent r is related to the moment properties of
{(p); that is, {(p) has to satisfy the normalization constraint
(21), together with

jmg(p)pzﬂdp:o, 2<s<r—1  seven, (38)
0

jo 2(p)] p*+" dp < o, (39)

In particular, it can be shown that r=2 as soon as
{&1Lp)l p* dp < 0. M, moreover, {(p) is positive, then
r=2,

3.1. Regularization Functions

A number of 3D regularization functions {{p) and their
associated G(p) and g(p) functions are collected in Table I.
Note that the smoothings that are r> 2, such as the super-
Gaussian, are also not strictly positive. The related 2D
regularization functions (obtained by projecting a straight
3D (vortex) filament onto a 2D plane) are useful for 2D
{vortex) particle methods and are coliected in Table I1. See
also Huberson [27] and Hald [25] for additional 2D
smoothings.

The 3D Gaussian smoothing

~p¥2

{p)= (40)

(2n)7 ¢

corresponds to m=o0, r=2 It yields the 2D Gaussian
smoothing when projected in 2D. The 3D low-order
afgebraic smoothing (proposed by Rosenhead [40] in the
context of vortex filaments)

3 {

C(.O)=EW (41}

gives m=0o, but r=0 because the inequality (39) is
not satisfied. Thus, this smoothing might not lead to
convergence as the number of particles is increased.
When projected in 2D, it yields the 2D low order algebraic
smoothing (which might also not lead to convergence).

A new 3D smoothing is proposed which will be referred
to as the high order algebraic smoothing:

15 1

T (42)

{(p)
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TABLEI
3D Regularization Functions
ani(p) 4nG(p) 4n 9’%) m oy
3 1 1
PEERTEL Ry Iy © 0
Low order algebraic smoothing; {(g), n(p) > 0; note that r =0,
yields 2D low order algebraic smoothing when projected from 3D to 2D
15/2 (p® +3/2) (p*+5/2) o 5
PRV T+ 7 PEEIVEE
High order algebraic smoothing; {{p), #{g) > 0; yields 2D high order algebraic smoothing
2\ I p 1 r 2\
(;) e 7 Eerf 37 P erf 3m |—\> ] e ok % 2
Gaussian smoothing; {(p), #(#) > 0; yields 2D Gaussian smooething
3 1 .
Je=? —(l—e7) w 2
p)=>0,7(p)# 0
3 sech?(p?) —; tanh(p*) a0 2

{(p)>0.n(p) #0

2 1z 5 P2 _ 1 p 1 .
(;) (5—3)" p(f(z— Y

Super-Gaussian smoothing; {{p), n{p) # 0

The functions below have, for p > |:

0 -

and, for p < 1:
3 Y3-p%
Hat smoothing; does not yield 2D hat smoothing

4 i 2 {arcsing
il Bhilaiiinnlt ol 1— 23172
rc( ” +(1—p% )

n(1—pH)'7?

Smoothing that yields 2ID hat smoothing

|

[

2 l . 23142
2 pr aresing —p(t—p ')

In the context of particle and filament methods (not
necessarily vortex methods), this new smoothing (42) is
special in many respects:

» It has convergence properties equal to those of the
Gaussian smoothing (40).

+ [t yields the previously known 2D high order algebraic
smoothing when projected to 2D.

« The associated G(p )} and g(p) functions are numerically
more convenient to use than those associated with Gaussian
smoothing (see Appendix A).

« For vortex particles, this smoothing is a case for which
closed form expressions for all quadratic diagnostics can
be obtained: kinetic energy, helicity, and enstrophy (see
Appendix C).
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3.2, Relaxation of the Particle Vorticity Field Divergence

The particle method has no built-in control on keeping
the particle vorticity field, ®,, nearly divergence-free as time
evolves. This weakness may get the method into trouble in
long time computations. Morcover, the need for particle
redistribution and/or addition may also arise due to intense
vortex stretching.

This point is illustrated by numerical results on the
inviscid collision of two vortex rings, Figs. 5 and 6.
Although the computations fail to go through the fusion
process (a viscous process!), the reconnection of vortex

hERS

1.

BRAS

L

FIG. 5. Collision of two vortex rings computed with the inviscid
method of regularized vortex particles. View of particle strength vectors;

(a) classical scheme; (b) transpose scheme. Initial conditions: same as

Fig.3,¢=02.
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tubes has nearly occurred. The classical and transpose
schemes do not, however, lead to the same “flow picture”
before numerical blowup, Fig. 5. This accumulated effect is
due to @, not remaining nearly divergence-free as time
evolves, Fig. 6. Note that both methods perform equally
well/bad on the conservation of linear impulse and kinetic
energy (see also Section 5 and Appendix C). This is in
contrast to the simulations with singular particles for which
the transpose scheme is clearly superior.

These regularized vortex particle computations can be
compared with regularized vortex filament computations
of the same problem: Chua, Leonard, Pépin, and
Winckelmans [15], Winckelmans [45], Anderson and
Greengard [37. Since both methods are inviscid, they both
fail to go through the fusion process. Vortex filaments,
however, are divergence-free by construction. Hence they

119
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LINEAR IMPULSE
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0o 20 40 50 8.0 100 12.0
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08

0.0 2.0 4.0 6.0 8.0 19.0 120
TIME
FIG. 6. Collision of two vortex rings computed with the inviscid
method of regularized vortex particles. Diagnostics [ and E_ (£, not
evaluated). Transpose scheme (solid), classical scheme (chain-dash).
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remain a good representation of the vorticity field during
this inviscid collision process.

A relaxation scheme is proposed which forces the particle
field, @, to remain nearly divergence-free for all times, and
hence it makes the method well-suited to long time
computations. The procedure is as follows: if and when &,
becomes a poor representation of the divergence-free field,
o,, assign new particle strengths a?,_(z) by imposing that
@AX7(1), 1) =@, (x"(1), t), namely by solving the system of
linear equations for all p:

TIME = 5.00 #1807

A N -}

TIME = 4.60

T AAYS

TOMNRAS
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Y @t (1) L(x(r) — x*(1))

=2, [ed4(t) {(x7 (1) —x7(1))

+ V(ad () - V(G x () —x(1) . (43)

Different formuias for the evaluation of global quadratic
diagnostics (energy, helicity, and enstrophy) based on both
@, and ®, are derived in Appendix C. The comparison
between o, -based quadratic diagnostics and their &, -based

TIME = 4.0C

TIME = 5.00

-

FIG. 7. The “knot” problem computed with the method of regularized vortex particles and using the transpose scheme. No particle addition and
no relaxation of V- @, . Perspective view of particle strength vectors. Initial conditions: I'=1, R=1,s=1, N, =250, s =0.L.
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counterparts provides global criteria as to when the need for
applying the relaxation scheme arises during the course of a
computation. Other global criterta can be used, e.g., criteria
based on monitoring the conservation of total vorticity
and/or linear impulse and/or angular impulse (see Section 5
and Appendix B). Finally, local criteria can also be used,
e.g.. local monitoring of V- (& ,(x”(r), 1)} for each particle p.
Since e, is close to a¥,, , the above system is of the form
A =0,y With A close to the identity matrix. Writing
A=I+(A—-1T), it can be solved by iteration using the
convergent scheme;

p O _ P
anew —aoid’ ISPQN’
po(n)_ P p (m—1} Feptt  (R—1)
u’new _(aold+unew )_Za_ﬂ ancw H (44)
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Note that this method i1s not the Jacobi iterative method
{which would be obtained by writing 4 =D +(4—D)).
Actually, because 4 is not diagonally dominant (when the
core overlapping condition is satisfied as it should be),
Jacobi or Gauss—Seidel usually fail to converge even with a
good first guess. Only highly underrelaxed versions of
Jacobi or Gauss—Seidel sometimes converge!

A convergent “Gauss-Seidel” version of the above
method is obtained by simply making use of the latest

values of @, (ie., overwriting of the vector e, ):

uﬁew:ag]d’ lépst
P — Iy P — P et
ancw_ (uold+anew) Za anew’ (45)
q
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FIG. 8. The “knot” problem computed with the method of regularized vortex particles and using the transpose scheme, No particle addition and

no relaxation of V- &, . Diagnostics I, 4, E, (solid) and £, (dash), #,.
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Finally, convergent overrelaxed versions of both methods
can also be used.

It should be mentioned that Pedrizzetti [36] also
proposed, in the context of singular particles, a relaxation
scheme called the “divergence filtering method.” This
scheme can also be used in the context of regularized
particles: At every time step, the updated particle strength
vector, a”(¢), is modified using the filtering,

W TIME = 500 «1p™"

TIME = 4.50

TRRAD

WINCKELMANS AND LEONARD

@i (1) ={1-for)e’()

0, (x"(1), 1)
o (x?(1), 1)l

+ /ot la?(1), (46)

where f is a frequency factor; ie., the time scale 1/f is
“tuned” with respect to the time scale(s) of the physical
phenomena under study to give satisfactory results.

TIME = 4.00

TORRAS

- % %
A

TIME = 5.00

FIG. 9. The “knot” problem computed with the method of regularized vortex particles and using the transpose scheme. Particle addition (every
At =0.125) and relaxation of V - &, (every 41 = 0.25). Perspective view of particle strength vectors. Initial conditions: '=1, R=1,s=1,N,=175,6 =0.1.

Final N,(1=5) = 541.
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To be most effective, our relaxation scheme must be
accompanied by the addition of particles wherever vortex
stretching is intense, This has to do with ensuring the core
overlapping condition, g/k > 1, for all times, Recalling that,
in inviscid flows, vortex lines move as material lines, one
assumes that A(r} oc |la(t)l|. A simple local procedure is
then to split a particle o into two particles /2 when
a(T)| =2 |e(0}||. This ensures the same overlap as that
initially. The new particles are placed at x + ¢,0/|a|. This
choice ensures the conservation of total vorticity and linear
impulse. Angular impulse is not generally conserved by this
scheme. (A scheme exists which conserves all three linear
invariants but it requires the solution of a set of nine non-
linear equations for the nine unknowns @', @ and Ax.) The
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parameter ¢, is chosen so that the new particles smoothiy
replace the old ones {e.g.,, ¢, =0.25k(T)).

The above procedures are applied to the computation of
the inviscid “knot” problem, Figs. 7 to 10, and use only a
single line of elements to define each vortex ring. This purely
“computational” problem includes complex vortex interac-
tions with intense vortex stretching and also has nonzero
angular impulse, A, and helicity, 3. Here, I, = —I_ with
I=(I2+1%)"7 and 4, = A, with A=({42+ A2 As
seen in Figs. 7 and 8, the computation without relaxation of
V-@&, and without addition of particles performs poorly,
mainly because particles become misaligned from the direc-
tion of the vortex tube they are supposed to discretize, This
phencmenon surely happens, no matter how many particles
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FIG. 10. The “knot™ problem computed with the method of regularized vortex particles and using the transpose scheme. Particle addition and

relaxation of V- &, Diagnestics 1, 4, E, (solid) and £, (dash), o#,.
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are used. If the relaxation of V - &, is applied, together with
the addition of particles wherever stretching is intense,
the computation performs much better, Figs. 9 and 10.
Invariants are better conserved (see also Section 3 and
Appendix C).

Note that the relaxation scheme has a diffusive character
which makes the inviscid particle method “robust”: vortex
lines that would reconnect in high Re number flows because
of finite viscous diffusion reconnect artificially when the
inviscid particle method is combined with the relaxation
scheme. Vortex lines reconnect artificially because, if two
vortex lines of opposite sign vorticity are locally in close
proximity, applying the relaxation scheme results in partial
mutual cancelation of the particle strengths in that region.
This results in a new topology, where the previous vortex
lines have “reconnected” locally. The resuiting topology is
likely to be close to the one that would be obtained in high
Re number flows.

4. YISCOUS DIFFUSION BY THE REDISTRIBUTION
OF PARTICLE STRENGTHS

Despite the lack of built-in control on the particle vor-
ticity divergence, there is the unique feature that the particle
method allows for and that cannot be achieved with a fila-
ment method: the possibility of taking into account viscous
diffusion, Eq. (3). This property is very attractive because
viscous diffusion is a necessary ingredient for the successful
reconnection of vortex tubes,

Diffusion can be dealt with using an approach in which
the strength vectors @”(z) are redistributed among particles
in a manner that is consistent and accurate. This approach
was introduced by Mas-Gallic [ 327, and Degond and Mas-
Gallic [22] (see also Cottet and Mas-Gallic [20, 21],
Huberson [27], and Choquin and Huberson [14]) in the
general framework of solving convection-diffusion equa-
tions using particle methods. Another particle exchange
scheme for discretizing the diffusion terms was introduced
by Fishelov [23]. The former scheme was used for the pre-
sent work. It was applied to the 3D vortex particle method.

In essence, they showed that the diffusion operator (i.e.,
the Laplacian) can be approximated by an integral operator
which can, in turn, be discretized using the particle
representation of the function of interest. Consider a
smoothing function with radial symmetry as described in
Section 3 and which satisfies the integral constraints (21),
(38), and (39), together with

|, 1) o7 dp < co. (47)

Define

——~—{Up)=nlp) (48)

pdp

WINCKELMANS AND LEONARD

and n_(x)=#(|x|/o)/6® Then a good appreximation to
V3f{x) is given by

2
5 (49)

V(x) = 5 | (S0 =S n,(x—¥) dy

in the sense that, in the appropriate norm, the difference
between V2f(x) and Eq. (49) is @((g/L)’). Again, the classi-
cal smoothing (41} does not satisfy the constraint (47) and
is therefore a poor choice for the diffusion term. The func-
tion n,(x) is essentially an approximation te the kernel for
the heat equation. The nature of the approximation may be
understood as follows: For the purpose of illustration,
consider the Gaussian smoothing (40) which is such that
7(p)=£{(p). Then, the Fourier transform of Eq. (49) gives

- a 2 22 -
-2 ok} =1) k) == (e *77 — 1) f(k)
~ — kX1 + O(k%6?)) f(k)  for smallk
=~ F(V(x)), (50)

thus showing that, in the Fourier space, the integral
operator is a second-order approximation to the Laplacian
when #{p) is the Gaussian. This conclusion is consistent
with the above error estimate since the Gaussian smoothing
corresponds to r=2.

Consider now the general convection-diffusion equation
written in conservative form (i.e., V- u not necessarily zero),

SV (fuy=v VY,

3 (51)

and the equation approximating (51),

a 2v
Lov-(fa =2 [ (0= S mlx—y)dy. (52)

<Y

Acceptable error estimates are obtained for the difference in
time between the solutions of the two problems for all v,
provided that #(p) =0 for all p (which implies that » < 2).
(The case n(p)# 0 is more obscure and will not be
addressed here.)

Consider a particle approximation of f{x, f),

fox, y =X (f7(1) vol (1)) L, (x —x"(1)),  (53)
3
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FIG. 11. Fusion of two vortex rings computed with the viscous method of regularized vortex particles and using the transpose scheme. View of par-
ticle strength vectors, Initial conditions: I'=1, R=1,5=2.7, o= 15°,r,= 005, 1, = 3( =N, =49), N, = 64,0 = 0.065, Re = I'/v =400, and @2, = (I/2n4%)
(14 (r/R) cos 8) e =27 with a=0.1.
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and solve the approximate convection—diffusion problem
{52), using a particle discretization of the integral operator:

d

TR0 =u(x? (1), 1),

% vol”(1)=wvol P(L) V- u(x?(1), 1),

(54)
d 2
5 S ehvol*(1) =g—‘; vol 7(1) 3 vol “(1)(f*(1) — f *(1))

X 0 (X7(1) — x(1)).

For n(p} =0, the error estimates show that the replacement
of the integral operator by a discrete sum leads to an error
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of O((hio)"/(o/L)). Thus, the particle approximation of
the diffusion term leads to a global error of G{v{(s/L)" +
(h/e)"/(a/L))}). For arbitrary v, this error is higher than the
error &{(o/L) + (h/e )"} due to the particle approximation
of the convective term, but, for small v, this error is lower.

An important remark is in order: {(p) # 0 implies that
n{e)# 0 but {(p) >0 does not guarantee that n(p) >0 (see
Tables I and II}. For viscous computations, it is a good
policy to use functions for which both {(p)} > 0 and »(p) > 0.
This limits the choice to functions that have »=2, but it
leaves the freedom of arbitrary viscosity.

Degond and Mas-Gallic [22] have generalized the for-
mulation to an operator of the form V - (v(x, r) V) instead of
v V2 with v constant. This generalization could prove useful
if one wishes to use this method in the context of large eddy
simulations with a subgrid turbulent eddy viscosity.

Applying the above method to soiving the incompressible
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FIG. 12. Fusion of two vortex rings computed with the viscous method of regularized vortex particles and using the transpose scheme. Diagnostics

I, I, E, (solid) and E, (dash), &, (solid), and &, (dash).
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vorticity equation, Eq. (3), with regularized vortex particles
leads to the following schieme (see also Appendix A):

ix”(t)=u,,(}i:

a (), 1), (53)
d I j— b A
i (7)=(a’(r)-Viu,(x”(¢), 1)

+%Z {vol?a’(t) — vol‘a”(1))

X7 AxF(1) —x(1}). (56}

The viscous method (using the transpose scheme) was
applied to the computation of the fusion of two vortex rings
at Re=1/v=400, Figs. 11 and 12. (This computation is
presented here for the sake of illustration. It is intended
to present the results in more depth and to put them in the
context of other researchers’ work in another paper.) The
computation goes through the entire fusion process with
successful reconnection of the vortex tubes. No particle
addition or relaxation of V- @, was used. Nevertheless, (1)
linear impulse is nearly conserved (98%); (2) E, and E_;
and (3) &, and &, remain nearly identical (see Appendix C).
Hence, it appears that viscous diffusion helps maintain a
nearly divergence-free particle field @,. The decay rate of
the kinetic energy follows Eq. (96). Finally, the circulation
of the reconnecting vortex tubes is also nearly conserved:
curves of I', and I' . (Note that, because the Gaussian vor-
ticity distributions of the two rings overlap slightly at =0,
I,(0) is not exactly equal to unity.)

5. VORTEX PARTICLES AND CONSERVATION LAWS

The behavior of the method with respect to conservation
laws is now examined. Conservation laws for 3D unbounded
flows are reviewed in Appendix B.

First, the conservation of the linear invariants is
examined. (These will be referred to as invariants when the
real physical flow is understood and as diagnostics when the
computed flow is understood.) For a system of singular
vortex particies, the linear diagnostics (89), (90), and (91)
become

Q=Y o), (57)
1=1Y x?(1) x a”(1), (58)
(59)

A=1Y x"(1)x (x7(t) x a?(1)).
P
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For a system of regularized vortex particles, the above
expressions for £ and I still hold. A is obtained as
A= %Z xP(yx (xP(ty < a?(1)) —
P

2CoQ,  (60)

where

C=4r f L) p* dp. (61)

With the high order algebraic smoothing (42), C = 3. With
the low order algebraic smoothing (41), the right-hand side
of Eq. (61) diverges logarithmically. Since =0 for 3D
unbounded flows, 4 reduces to Eq. (59).

The conservation of total vorticity 2 and linear impulse
I of a system of vortex particles is now examined. First
define the notation

K7 =K{x —x(1)|

JK# 9
- x4
ox o, K{x —x“(r)};

X = xF(:];

(62)

= xP(1)?

where K is the Biot-Savart kernel {Eq. (7) for singular
particles, and Eg.(29) for regularized particles). Note
that K?*= — K% and that dK**/dx,= dK?%/dx,. With the
transpose scheme, the evolution equations for the particle
position and strength vector become

d
Exf=Z(K’”"Xa"')I, (63)
a
d JK?”?
2 or—gr ¢
=0 (Xq: a)clxa)
JK
=-3 P (af xa?) (64)

The total vorticity is conserved by the transpose scheme as
noted by Choquin and Cottet [13]. Indeed,

%Q :;,I(Z ) _Zﬁ—r, (a?xa¥)=0, (65)
since one sums on all pairs (p, g) and dK”%/0x, = JK*/dx,.
It is easy to see that the classical scheme or the mixed
scheme do not conserve total vorticity in general.

The investigation of the linear impulse is more
complicated (Cottet and Winckelmans 1987, private
communication). One must examine

4. _dfi
_ — | = P I4
o d(2zx xa)
=% (—xf’xa”)+ %(x"x%a") (66)
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The first term in Eq. (66) is equal to

1Y (K7xaf)xa?=—33 a’x (K" xa¥).

P4 Py

(67)

The second term in Eq. (67) must be examined in more
detail. Using suffix notation, this term becomes

1 d
- P P
2?(" “at ),-
1 Py

I '€~~k.\’,'?
2Z Y dx,

pd

H

5‘KP‘{
(a?xa’)
dx,

1
_;Z eyl xf — xf)
B

aKP‘l
dx,

_:—; Y egx? +x7) (@”xa’). (68)

P-4

The second sum in Eq. (68) vanishes since one sums on all
pairs (p, g} and 6K"/dx, = K%/0x,. Recalling that, for
singular particles,

6K, 0 X, ) Oy

— = | 73— 7+ 3

dx, Oxg dr |x| 47 |x|
one obtains

1 d
— P aqf
2%‘(x *a® ),,
L xf = x7)

= - Loy ——————
4;; * 4w |x® — x4

3
—;Zam

Py

x ((x” =x7) - (¢ x a%))

1 (x] —x7)
- Z e J g
4,'1.‘!

(since £ x,.x; = ()

XX g
4r |x|¥

{69)

(a? xa?),

(x] = x/Wxf —x{)
4z |xP —x9|°

e T g3 (e xa?
* 4y ',x”—x’fP( )i

[

1 T (K x (@ xa))

P

= 2 T (@ x Krxan), (70)

pg

where the last equality has been obtained using the
symmetry property K?= —K% and the vector identity:
ax{bxe)+bx(exa)+ex(axb)=0. For regularized
particles, one obtains:

WINCKELMANS AND LEONARD

@_fg_i(_q,(x)x)

dx, x, ix}?

_ —q”(x)5:k+ (3 q,(x)_{:g(x)) "c:‘c;

|x|? x|’

(71)

so that the same result as for singular particles, Eq. (70), is
obtained. Finally, combining Egs. (67) and (70), one
obtains, for both singular or regularized particles,

d . d(l
— [ =—1 = p 7
' dz(zé;x x“)

=—3Y a’x (K" xa’).

p.4q

(72)

The right-hand side of Eq.(72) is essentially a particle
discretization of — [ @ xu dx and will be smali as long as
the particle field remains a good representation of ®. Indeed,
if Eq. (1) integrated over an unbounded volume, one obtains
that | @ x u dx =0 for a physical low. The linear impulse is
thus nearly conserved by the transpose scheme as long as
the particle vorticity field remains a good representation of
a divergence-free fieid. Now, since all schemes for the
stretching of the vorticity vector are identical when this con-
dition is satisfied, it follows that linear impuise is nearly con-
served by all schemes as long as the particle field remains a
good representation of a divergence-free field. For singular
particies, it was seen numericaily that the transpose scheme
is the only one that performs well on the conservation of
linear impulse. Recall that it is also the only one which
constitutes a weak solution of the “transpose vorticity
equation.” For regularized particles, all schemes appear to
perform equally.

The conservation of the angular impulse, A, was not
investigated theoretically. Numerical experiments indicate
that A is not generally conserved by the method but that it
is conserved as long as the particle vorticity field remains a
good representation of a divergence-free field.

One must now investigate the conservation of the linear
invariants when the viscous method is used. First, it is easy
to see that the viscous integral operator (49) is conservative
(i.e., conserves total vorticity). Indeed,

[ @) -0y nx-y)dydx=0.  (73)

The particle discretization (56) of the integral operator is
also conservative since

Y (vol?a? — vol%a?} n,(x? —x*)=0.
na

(74)

Thus, the total vorticity is not affected by the treatment of
viscous diffusion. Second, as pointed out by Mas-Gallic
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(private communication, 1988), the linear impulse is also
not affected by the viscous integral operator but is affected
by the particle discretization of the integral operator.
Indeed, since

0=[xy,(x)dx = (x=y)n(x~y)dx, (75

so that

[ x1,(x = y) dx = | yn,x—y) ax, (76)

one obtains

Jxx| [ty - ot natc—y)dy | ax
- j U x17,(X—¥) dx] x &(y) dy
—ﬂxxm(ﬂm(x—y) dy dx
- j U ¥, (x~y) de x (y) dy
- ” XX 0(x) n,(x~y)dydx
=H yxe{y)n,(x~y)dxdy

— [ xx o) n,(x—y) dy dx

=0, (77)
by interchanging the role of x and y in the first integral. If
one now considers the particle discretization of the integral
operator, one obtains

Y xPx [Z (vol Pa — vol9a?) y(x7 — x“')}
» 4
=13 (x"—x9) x (vol "a? — vol90”) 5 (x” —x9) (78)
pP.q

which does not vanish, in general. It is thus a matter of
discretization to conserve linear impulse with the particle
approximation of the integral operator.

The evalvation of the “once-regularized” quadratic
diagnostics, energy E_, helicity #, and enstrophy &,, is
mvolved. The difficulty comes from the fact that the particle
field, @, is not generally divergence-free. The derivation
of the appropriate expressions is presented in detail
in Appendix C. In particular, the high order algebraic
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smoothing (42) is a case for which closed form expressions
for all quadratic diagnostics can be obtained.

The inviscid method of vortex particles, both singular and
regularized, does not generally conserve kinetic energy and
helicity exactly with any of the choices for the stretching
term. These quantities are thus used as diagnostics to
measure the performance of the method on a particular
problem. With singular particles, it is found numerically
that the transpose scheme again performs best. With
regularized particles, it is found that all schemes perform
equally.

In viscous computations, the decay of the kinetic energy
is used as a diagnostic to check if Eq. (96) is satisfied.

6. SUMMARY AND CONCLUSIONS

« The method of 3D vortex particles was investigated,
both theoretically and numerically. Both singular and
regularized particles were considered. The method suffers
from the fact that the particle representation of the vorticity
field is not guaranteed to remain a good representation of a
divergence-free field for long times, Different evolution
equations for the strength vector were reviewed. With
singular particies, the rranspose scheme leads to a weak solu-
tion of the “transpose vorlicity equation” and was aiso
shown numerically to perform best on the conservation
laws.

« For regularized particles, a relaxation scheme which
forces the particle vorticity field to remain nearly
divergence-free for all times was introduced.

+ Addition and/or redistribution of computational
elements is necessary wherever stretching is intense.

* In inviscid flows, vortex tubes retain their identity and
move as material volumes. The vortex filament method
which is based on these simple facts could, in some cases, be
preferred to the vortex particle method when computing
inviscid flows. Indeed, with vortex filaments, the filament
vorticity field is divergence-free.

« For viscous flows, filament methods cannot generally
be used. A viscous version of the method of regularized vor-
tex particles was developed. The method proved successful
in computing vortex tube interactions where viscosity plays
an major role such as vortex reconnection.

= A new 3D regularization function was introduced: the
high order algebraic smoothing. It 1s numerically convenient
and has convergence properties equai to those of Gaussian
smoothing, This smoothing is also a case for which closed
form expressions for all global quadratic diagnostics
(energy, helicity, and enstrophy) can be obtained.

» Linear and quadratic global diagnostics proved very
useful in assessing the accuracy and consistency of numeri-
cal computations with respect to known conservation laws.
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APPENDIX A: THE EVOLUTION EQUATIONS FOR A
SET OF VORTEX PARTICLES

Forl<p<Ay,

di‘ixr’=u“(xﬂ)= —%q""x(TT;(x”—x )xa?. (79)

For the classical scheme,

d u b7
— P =P LIy 4 = G —_x) yY
ar T T ax,[§£”k5, o x)“"]xﬂp
a q
=Lewaldd| 5055 G =) (80)

Recalling that p = |x{/¢ = (x,,x,,)"*/¢ with dp/dx, = x,/a’p
and that —(1/p)}(dG/dp) = q(p)/p>, one obtains

2 (x)=—l[q“’)5 L

dx, dx; Wopt TP g2
1 d (q(p)))]
x(-=— (L2 ey
( pdp\ p’
so that finally, for the classical scheme,
d 1 qlp) 1
E P‘Z;aﬁkafo{z[—?éﬂﬂ-;
g
1
{4 ()er-s-0)
(82)

d 1 q(p)
—qqf = — | 2 P
7 Y 3|: pe 0’ x

Sa
X (07 - (x? = X)) (x" = x%) x av)],

with p =
gives

jx# — x%/o. In a similar way, the transpose scheme

B,
ax;
i
fox;

Hoar_ 0
P =

dr

which leads to

1 1d q(ﬂ)))
F q . [,
o +02( pdp(p3

x(of - {((x7 —x*) xa’))(x* — x")}
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The combination of the above two schemes gives the mixed
scheme

4o sl 14d/qp)
ar” _%205( pdp(p3 ))

x [(a” - (x# —x9) ) (x?

—x7)x a?)

+ (a7 - ({(x" —xV) xa?)}(x" —x)]. (85)

In the above formulas, the term — (1/p)(d/dp)(g(p)/p’) can
be evaluated directly or by recalling that

485 (-s0)

The case of singular vortex particles is obtained by setting
dnglp)=1 with 4a(— (1/p)d/dp)(a(p)/p*)) =3/p° and by
excluding the g = p term from the above sums.

The equations obtained with the high order algebraic
smoothing (42) and with viscous diffusion are

(86}

1 (|x7 —x* + 3 )(xf’
dn < (|x" — x"|2+6 )32

[_ (1x” x| +a?)
(

[xP — x4+ ¢g?)%?

= _

xY)xa? (87)

4

d

d 1
—af =— Pyt
4% "l :

(Ix" —x“"+ 307)

(|x7 —x9|? + g2)"?

+3

x (af - (x? —x9)W(x" —x")x a?)

4

(Ix? —x9* +6?)°"?

+ 105v
% (vol "o — vola” }] {classical scheme)

% a?

iup=i (Ix*=x%* + 30%) a
dt 4n < (|x? —x9* 4+ 0%)*?
(Jx” =xY*+30°%)
(lxp_xq|2+o,2)7/2

+3

X (@7 - ((x* — x¥) x a))(x” — x) (88)

0_4

+ 105v (/x5 05"

x (vol o — vol"a”)] {transpose scheme)
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d , 1 <f3 (Ix* —x%? + 167)

Eﬂ. —'411' - [5 ({x"’~—x"|2+02)m
x{(a? - (x = x))((x* — x*) x a*)
+ (@ - ((x" —x¥) x a?))(x” —x*))

0_4

10
IO o T

x (vol "a? — vol"a” )] {mixed scheme).

APPENDIX B: CONSERVATION LAWS FOR
THREE-DIMENSIONAL INCOMPRESSIBLE
UNBOUNDED FLOWS

In what follows, the density is taken as unity. Only 3D
unbounded flows with zero vorticity at infinity are
considered. The total vorticity is therefore zero.

In inviscid flows, there are three linear invariants
associated with conservation of total vorticity, linear
impulse and angular impulse (Batchelor [4]}):

n:jmdx=0, (39)
Izlﬂudx=2ijxxmdx, (90)
A:J‘xxudx=%Jxx(xxm)dx. (91)

There are also two quadratic invariants associated with
conservation of kinetic energy and helicity

E:%Jau-udy(:%ftp-mdx, (92)

W:jw.udx. (93)

In viscous unbounded flows, £2=0, I and A are also
conserved. The kinetic energy, E, is not conserved. Indeed,
taking the dot product of a with the momentum equation
and integrating over an unbounded volume (Lamb [29]
and Batchelor [4]),

d
SE= -2 [epe,ax=—[wdx (94)

!

where @ is the dissipation function. From kinematics [29],

D=vid-0+2vV-((u-V)u}, (95)
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so that one obtains

d

—FE=_—y& 56

— Ve, (96)
where

é”::_fm-mdx (97)

is the enstrophy. Moffatt [33] showed that the helicity, #,
measures the net linkage of vortex lines. Thus, it is not con-
served in viscous flows because of the reconnection of vortex
lines. The enstrophy in not conserved in both inviscid or
viscous flows because of the stretching of vortex lines.
Taking the dot product of w with the vorticity equation, one
obtains {Batchelor [4])

“(z(w,-w,)_}_i W,
a\z T\

+ d dw,
=Cl)‘,wJe‘,f vw,——_—
ax,i axj

e+ a a w,—a),—) da,; Oy,
= . - . 1? —_— —— e —
WV o o\ 2 ) ax, ox,

so that, integrating over an unbounded volume,

(98)

d dw, dw .
—£=2Jw,-wje,;,dx—2tljlﬂa—(u—'dx.

9
dr ax; dx; (99)

APPENDIX C: THE EVALUATION OF
QUADRATIC DIAGNOSTICS

C.1. The Singular Case

The kinetic energy is given by

(100)

where integration by parts has been used. Due to the
nonzero divergence of §, the kinetic energy cannot be
simply written as

~ 1. . 1 a?-af
E=§J.\|;-mdx—(8ﬁ) ,;, Pt

PEq

(101)
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where the g = p term has been removed to avoid an infinity
in the evaluation of E. Aksman, Novikov, and Orszag [1]
obtained the correct expression for the kinetic energy by
considering the Fourier transform of the velocity field (7)
and by integrating Eq. (100) in Fourier space:

1 1
E=—— - P a?
Ton L X7 —x| (“ ¢

Pq

PEY

+((xp—x@)-a”)((x”—X")'“")). (102)

P —x  |x’—x7
Direct integration of Eq. (100) in physical space can be
done and leads to the same result. The advantage of
integrating directly in physical space is that the procedure
can be extended to regularized particles. Going back to
Eq. (100), one obtains, using suffix notation,

E 1( ! )2 Z P ot
=315= B M oy
2\4n o

PFY .

0 | 0 1
— — d
"Jax;(rxfxﬂ)axfﬂx—xﬂ) .
d

1/ 1\? oo d
ﬁi ? z (6j1‘6kn_6jn5k.’) “ka"a_xfﬁ

1 1
inX—x"I X — x| d")’

where use of the symmetry relation (8/8x,)(1/|x —x”|)=
—(0/0xP)(1/|x —x”} has been made. Considering a
local spherical coordinate system centered at x” and
defining x—x"=x', x—xY=x"+(x"—x9), dx=dx'=
drrd@rsin@dp=—r*drdudd with p=cosf and z=
|x? — x¥|, one obtains

(103)

1 1
(x —x?| |x — x|

an ccd 1 d r
_J-o ¢.[o rv[_l ﬂ(r2+2rzu+zz]”2'

This integral does not converge. However, since only
derivatives of this integral with respect to z are of interest
((Bfox?) |+ dx = (dz/dxP ) djdz) [---dx), a converging
factor that is independent of z can be added to the integral:

Ir-—’ZZnJ‘OOa’rJ1 d,u( -_ ! —1)
o 1 (r? 4 2rzp 4+ 2\

e 2 - 24172 1
:ZHJ‘ l:(r + 2rzpu+z°) __#] r
0 z —1

A

(104)
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=211J‘OO (_ﬁ__lr-%—zj—\r—zl —2\)dr
0 4

=2nzf (1= r—1] =2)di

0

1
=2nzj (2U—2)dt= -(2n)z. (105)
0]
Differentiating f gives
a
2 (@n):
7o 3y (202
o {0z d
—@(ma(‘h—))
L d (e, 2 (fo))
ax?\oxy) oxf z
BHCRLS i) 106)
z z
so that the kinetic energy is finally obtained as
E=L (87 Opn — O Sar)
16z . 4
Py
3y 3 (xf —xfHxf— xj‘f))
|x? — x| |x# — x4
1 1
=—y ——(uﬂ-u"
16m = Ix7—x¥|
P#4q
(x7—x9)-a?} {(x" —x¥) -a¥)
. 107
+ |xP_x<f| pr_qu ( )

The result of Aksman, Novikov, and Orszag [1] has thus
been recovered using a different method. Equation (107)
can be written as

1 i ((x*—x7) - a”)
E=_— - Pl 7
l6n g [x? — x4 |:2a N +( [xP —x9|
PFy
(x> —x)-a)
X X —af.a?] ] (108)

In this form, the correct expression for the kinetic energy
can easily be compared with Eq. (101). The first term in
Eq. (108) is equal to § | § - @ dx. The second term is equal
to L y-V(V.-y)dx. This term remains negligible as
long as @ remains a good representation of ®. In fact,
the difference between the two expressions can be used
as a diagnostic to check the consistency of numerical
computations.
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Proceeding now with the evaluation of the helicity,

x)‘:jm-udx, (109)

one obtains

M:J‘(Eu”é(x—x”)'f“v(“p'v(m);—_ﬂ_ﬂ)))

-3

'(‘év(mﬁ—_rﬂ)““) @

P w4

__L a(uu)
4rzm |x? — x4l

d

dx; E_X.'

1 2
+ (E) Y el
p.q

1 i, 1
— ax. 110
x(lX*X"[)f'm(lx—qu) b (o)
The second term in (110) vanishes. Indeed,
r a8 1 0 1
oaPat | = d
E“ka’akJ ax,-ﬁx,(lx—xﬂ)axj(1x—x"|> X
a @ 0 1 1
- e gPyy Y
CoRFI % G e r 6xf,"f X — x| [x — x|
g joz
= anﬁkai’az 5(?; Ex_f" (axf)
a 0 oz
:2?‘[8;,-,(&:,00!1@@(46}:?):0, (III)
since £, (6/0x,)(d/6x;) = 0. Thus,
1 xP _ x¢
#=ly XD oa) (112)
4np‘q|x”—x"|

The case g = p is a removable singularity since e¢” x a” =0,
Finally, the enstrophy is not defined since the evaluation
of

g:jm.m (113)

amounts to integrating the square of the 4-function.

C.2. The Regularized Case

We refer to Chorin [ 11] for previous work on the evalua-
tion of quadratic diagnostics when using a vortex model
made of regularized straight-hne segments: the “vortex
lattice model.”
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“Twice-regularized” quadratic diagnostics are difficult to
evaluate when considering regularized methods, filaments,
or particles. For instance, the integral,

Ec,(,:%J u, -u, dx, (114)

cannot, in general, be evaluated in closed form. If “once-
regularized” quadratic diagnostics are considered instead,

Ea=%J.u-u6dx, (115)

integrals of that form are easily evaluated in closed form in
the case of vortex filaments. For vortex particles, they can
only be evaluated in closed form with certain choices for the
regularization function {(p}).

In the filament method where points on a filament are
convected with the local regularized velocity u,, E, is of
interest because it is an invariant of the motion. Also, with
the inviscid particle method, it is found numerically that E,
remains nearly conserved as long as @, remains a good
representation of w,. This indicates that once-regularized
diagnostics are indeed of interest for both filament and
particle methods,

If one uses instead the local averaged-velocity u, = £, to
compute the dynamics of vortex filaments, then £,
becomes an invariant of the motion {Leonard [30]).

The once-regularized integral £, can also be understood
as a twice-regularized integral with the regularization
function {(p)= & pl* & p}. This is easily seen if one recalls
the associativity property of the convolution product:

E,=4[u-ue(f, «E,))ax

=%f(u-fa)v{u-rf(,)dx. (116)

Note that this property also suggests a method for evaluat-
ing (if needed) E,, with vortex filaments or particles; Given

(p), find L(p)={(p) * {(p). Then

Engju-(u*{,)dx. (117)

Unfortunately, finding analytically {(p) from {{p) is usually
not possible. One exception is the Gaussian smoothing (40)
for which the use of the Fourier transform and the convolu-
tion theorem leads to {(p) = C(p/ﬁ). This smoothing can
be useful for vortex filament methods. With vortex particles,
however, the Gaussian smoothing is unfortunately a case
for which Eq. (117) (or Eq. (115)) cannot be integrated in
closed form.
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In what follows, all quadratic diagnostics are once-
regularized. As mentioned above, with vortex particles these
can only be integrated in closed form for certain regulariza-
tion functions. The high order algebraic smoothing (42)is a
case for which all necessary integrals (energy, helicity, and
enstrophy) can be evaluated in closed form.

The evaluation of the kinetic energy is first considered,

-udx:%J(VxnIla)-(qul)dx

AV (Vx{§))dx
A=V +V(V.§)) dx

@ dx 41 j V(Y- ) dx (118)

where integration by parts has been used. Due to the
nonzero divergence of ., the energy cannot be simply
written as

~ 1 1
- i e _— ” P
E, 2.(41 mdx—2§ G.(x"—x")a’-a?

nd

1o (X =%+ 30?)

- o’ al.
8m - (|x?— x>+ ¢%)¥*

(119)

Instead, Eq.(115) must be integrated in closed form.

Following the same procedure as in Section C.1, one
obtains
E ~1(_1_)ZE(5 S 5 af aqii
T 2\da) SN HERT gt oy
(Ix—x?*+ 3% 1
. 1
(e ) 12

The evaluation of the integral in Eq. (120} is done as in
Section C.1. It leads us to consider

r(r? +362) F )
B L0 R 1
o?)¥? J,; Ju((rzﬁ-21*:2,&1-}-22)”2

B w p(r? + 10?) (r2+2rz,u+zz)”2_ !
=2 J;, (r2+a‘1)m|: z K dr

12jd

—1
e Jm (12 + 3a%)

o ([2_+_ 2)3/’

U+ 3a%)
=2nz J‘o W (2[~

(lr+ 11—t~ 1{—2)dr

2} dt, (121)
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with t =#/z and a = a/z. Now, since

11+ 32a%)
(t2+a2)3/2

_ (P +3a%)
- (12+a2)l/2’
i+ ia)
= “2 +a2)”2

(122)
! S U+ a),

2+ 3aY)
I (t2+a2)3/2

one obtains
I=2nz(a— (1 +a¥)'?)

-en<(==(+(3)))

=2no(l — (p? + L)), {123)

with p = z/o = |x” — x%)/o. Differentiating [ gives

d @ % _ 0 (dp dl

dxf ox{ _BxJ{’ Bvc"dp
Pp_dr o oo &1
é’x”axj’dp 5xf’6r"’dp

3

__2 p 5}.’ 14
@+ 2 (P+ D7
><(.vci’—x‘?)(x,”

) xf —x{)
z? ’

Use of Eq. (120) and Eq. (124) finally leads to the following
expression for the energy:

(124)

1 1 P o’
E =— 2 a” a?
’ 16ﬂ§|xf’—x?|[ PRV PR e

x (((xﬂ —x9) @’} (x"—x*)-e’) ﬂ”‘"‘“)]'
IxP_x‘f! lXp_qu
(125}

The first term in Eq. (125) is not equal to 5§, - @ dx,
Eq. (119), as was the case with singular particles. The two
expressions give identical results as long as @, remains a
good representation of @,. Their difference provides a way
of checking the global consistency of computations.
Another smoothing that leads to a closed form expression
for the energy is the low order algebraic smoothing (41):

1 1 ) arc sinh p
I . 12 ST P e ey
Ee 167:217&”—#’1[ ((p b P )a ¢
i 1 arc sinh p
+—[(p*+ 1) +2 - )
p((p + ) (p2+1)1/2 o

N (((X” —x9)-a”) ({x" —x)-,%)

x|’ x|

ﬁu”-a")]. (126)
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Proceeding with the evaluation of the helicity, one obtains

3ﬁ,=[m-uadx

=j(§u”5(x—x”)+V(u”-V(

)
. (Z VG, (x —x%) x u“) dx

=Y o (VG (x —x’) xa’)

F.q
d i( |
¥, 0, \ |x — X7

1
+= 2 el J ™
47 o ax

X i G (x —x7) dx.
0x

J

{127)

As was the case for singular vortex particles, Eq. (111), it is
easy to show that the second term in Eq. (127) vanishes, so
that the simple formula

sﬁ=_§,“p'(g|,f7x“ﬂ_1q}({xkx")><“”)
P Y
=;§;q—i')(;—_x§—l)((x"—x“)-(uf’xu")) (128)

is obtained. Equation (128) is applicable to any smoothing.
With the high order algebraic smoothing (42), one obtains

I (G e i)
e T an 5 (jx* - x92 4 ¢2)*?
x ((x? —x%)-{af x a¥)) (129)
and, with the low order algebraic smoothing (41},
1 1
%=ﬁ!§f{1xﬂ—x"|2+az)3ﬂ
x ((x? —x) - (af x a¥)). (130)

Finally, the evaluation of the enstrophy is examined:
cf,,:Jm-mudx. (131)

Due to the nonzero divergence of @, the enstrophy cannot
simply be written as

& = J.m @, dx=Y {(xF—x 0" -a
74
1 15 ot
:ZEZ7(le’—x"lz+az)mumuq' (132)

pod

271

Instead, Eq. (131) must be integrated in closed form. This
leads to

s=| @ @’ 5(x —x*)+ V (ﬂ”(ﬁp%_x—q)))

. (Z al (x —x7)+ V(o7 - VG, (x — x*’)))

= Z [u” @’ (x7—x)}+a”-V(a? - VG {x — x7), _»)
F2x4

1
g D

o 0/ 1
g | 2 e
TR e ax-ax,((lx~xf’|)c"(x x7) dx

+1 P d a 1
4:10( ﬁx 6xA X —x?|

¢ 4
_ —_ l?
xax 8x,G SX )dx:|

(133)

The integrals in Eq. (133) are evaluated using the same
procedure as for the kinetic energy evaluation, together with

J—a-—?—(—l— {Ax—x%) dx
Ox; 6x, \[x—x*1/ 77"

__J_ﬁ_( ! )i
0 ax, \Ux—x*|/ dx,

{(x—x7)dx,

CoAx—x%}dx

e R (134)

2o 1y
dx; dx, 1x—x"})ax6

G.(x—x%)dx
—x9) dx.

The [irst integral in Eq. {134) leads us to consider

15 r
I, = (27[) (W) L drm

de d d -1
LT 2rzp v 7

(15 a_“ 1 ! 5
S g

with = r/z and a = a/z. Now, since

—2)dt,  (135)

J_f_d,_ _ v
(E2+02)7/2 - 5 (r2+a2)5/2’
j 2 i 2 AP +3i4%) (136)
([2_,{_&2)7,'2 - 15&2 (12+a2)5/2 ’
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one finally obtains

_Lp¥p’+3) 3 1
h= ((;02+1)"’2 2((pz+1)5”_1))_’ (137)

[
where p=z/o=|x"—x%/o. The second integral in
Eq. (134} leads us to consider the same integral [ as in the
energy evaluation, Eq. (121). Differentiation of [ and 7,
gives

¢ 0
ﬁgx—?(h)
_ Lot D+E 3 P+ D3
- 53 (pl + 1)‘!!2 ik gl (pZ + 1)9;‘2
X (x7 = x7)(x - x:z)),
g ¢ ¢ @
e wriraritl,
dx? Oxf dx? 0x]
1/ (p°+3) 3 (p°+3)
TENPIE )T R (P YR

x (xf — x{)(x7 ,x;,})_ (138)

All the necessary terms have been oblained. The final result
18

(P’ + 3+

LT =p e+,
"‘RE[W“ RV
x((x"—x"}-up)((x"—x")-u“)]. {139)

Again, the succes of the above derivation strongly depends
on the integration properties of the high order algebraic
smoothing (42). No attempt was made to obtain the
expression for the enstrophy when using the low order
algebraic smoothing (41).
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